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A B S T R A C T

Background: Heightened blood lead levels (BLL) are associated with cognitive deficiencies and adverse beha-
vioral outcomes. Lead-contaminated house dust is the primary source of exposure in U.S. children, and evidence
suggests that even background (low-level) exposure has negative consequences. Identifying sources of back-
ground exposure is of great public health significance because of the larger number of children that can be
affected.
Methods: Blood lead was assessed in a bi-racial sample of children from Syracuse, NY, aged 9–11, using es-
tablished biomonitoring methods. The spatial density of vacant properties was modelled from publicly available
georeferenced datasets. Further, regression models were used to measure the impact of this spatial density
variable on children's BLL.
Results: In a sample of 221 children, with a mean BLL of 1.06 µg/dL (SD = 0.68), results showed increases in
spatial density of vacant properties predict increases in median blood-PB levels, b= 0.14 (0.06–0.21),
p < .001. This association held true even after accounting for demographic covariates, and age of individual
housing. Further analysis showed spatial autocorrelation of the residuals changed from a clustered pattern to a
random pattern once the spatial density variable was introduced to the model.
Discussion: This study is the first to identify a background-lead exposure source using spatial density modelling.
As vacant properties deteriorate, lead-contaminated dust likely disperses into the surrounding environment.
High-density areas have an accumulation of lead hazards in environmental media, namely soil and dust, putting
more children at risk of exposure.

1. Introduction

Lead (Pb) is the most common environmental toxicant leading to
declines in neuropsychological functions (Canfield et al., 2003; Mason
et al., 2014). Heightened blood leadlevels (BLL) are associated with
cognitive deficiencies, increased cortisol and vascular resistance stress
responses, and adverse behavioral outcomes (Dietrich et al., 2001;
Gump et al., 2009, 2007; Lanphear et al., 2000; Reyes, 2015). Given
these negative consequences, there have been increased efforts over the
last 25 years to manage Pb exposure across the U.S. (Dixon et al., 2005;
Galke et al., 2001; Smith Kormacher et al., 2012). Pb-hazard control
programs in Syracuse, NY may have assisted in reducing the average
BLL among children from 8.77 (µg/dL) in 1992 to 3.94 (µg/dL) in 2011
(Shao et al., 2017a). However, blood levels historically considered low

(< 10 µg/dL) still impair cognitive development (Koller et al., 2004;
Lanphear et al., 2005), academic performance (Canfield et al., 2003),
and socio-emotional regulation (Winter and Sampson, 2017).

In a more recent cohort of Syracuse children, Gump et al. (2017)
found increases in hostility and oppositional defiant behaviors, with
increases in BLL, despite very low levels (M = 0.98, range 0.19–3.25).
Lead control interventions have focused on mitigating identified routes
of exposure, primarily from lead-based paint in older housing (Carrel
et al., 2017; Pirkle et al., 1998; Saegert et al., 2003). Through Pb-
contaminated dust, present within housing structures, older residential
dwellings are the primary route of exposure in children, and they dis-
proportionally affect low-income, racial minorities (Gaitens et al.,
2009; Jacobs, 2011; Jacobs et al., 2002; Lanphear et al., 1998b, 1998a,
1996; Matte and Jacobs, 2000; Potash et al., 2015). In contrast,
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background routes of Pb-exposure represent sources that are harder to
identify, typically because they are more difficult to measure and Pb is
present at lower levels. Background exposure routes include the con-
centration of trace metals in street dust (Fergusson and Kim, 1991) or
elevated airborne-Pb from soil resuspension (Harris and Davidson,
2005).

National figures of decreases in elevated BLL, ≥ 5 µg/dL, (Kennedy
et al., 2014; Tsoi et al., 2016) obscure the fact that the spatial dis-
tribution of exposure is clustered in low-income areas. Studies have
found a number of factors associated with BLL that cluster at the
census-tract level including: mean age of housing, mean value of
housing, median housing income, and proportion of vacant housing
(Reissman et al., 2001; Sargent et al., 1997; Shao et al., 2017b; Stewart
et al., 2014); more so, individual BLL have been found to be spatially
auto-correlated (Berg et al., 2017; Griffith et al., 1998). In other words,
measurements of BLL are correlated with each other across space,
suggesting that an underlying spatial process is influencing levels of
exposure (Shao et al., 2017b). This spatial process is not likely to be
natural, but instead a function of the built environment (Krieger et al.,
2003; Miranda et al., 2002).

In Baltimore, MD, researchers established that older housing is a
significant predictor of soil-Pb and contributes to the spatial distribu-
tion pattern of Pb throughout the city's soil (Schwarz et al., 2012;
Yesilonis et al., 2008). A separate study in Baltimore found that de-
molition, and debris removal, of older housing creates large quantities
of Pb-contaminated dust, which then disperses from the demolition site
(Farfel et al., 2003). Elsewhere in New Orleans, Rabito et al. (2012)
concluded that the destruction of over 100,000 homes by hurricane
Katrina disturbed Pb in old structures, and the ensuing dispersion cre-
ated widespread exposure risk. Others have identified that Pb-con-
taminated dust in exterior entry areas of housing is a source of lead in
street dust at the intersection of the driveway and the street curb (Clark
et al., 2004), providing evidence that Pb can disperse without forceful
disturbance.

With no amount of BLL considered inconsequential, low-level
background exposure is of great public health significance due to the
larger number of children that can be affected (Betts, 2012; Canfield
et al., 2003; Gump et al., 2017, 2011; Lanphear et al., 2018, 2000;
Winter and Sampson, 2017). Existing research has determined that
older housing and vacant structures increase the risk of Pb exposure;
however, some key limitations exist in the literature (Akkus and
Ozdenerol, 2014). Vacant structures have only been studied at ag-
gregated measures of various census-designated areas and these large
spatial scales limit our ability to determine in what way this risk factor
increases the likelihood of exposure. Models of dispersion have mea-
sured Pb levels at the immediate boundaries of a structure, i.e. the
driveway or property fence, and have not considered dispersion from
structures in the surrounding area. Furthermore, GIS-based exposure
research has overlooked low-BLL as an outcome, and has rarely ac-
counted for individual characteristics of children (Akkus and
Ozdenerol, 2014). The present study aims to address these limitations.

Herein, we describe methodology for modelling background ex-
posure to environmental Pb utilizing the spatial density of older vacant
properties. This density measure is a continuous spatial variable with
peaks and valleys, where high values (peaks) represent areas where
high number of vacant properties exist close together. We know that at
a minimum, Pb can disperse from a built structure to the street curb. It
is unlikely that dispersion stops there, thus, we hypothesize that in-
creases in spatial density of vacant properties predicts increases of BLL
in children.

2. Methods

Participants were drawn from the Environmental Exposures and
Child Health Outcomes (EECHO) study in Upstate New York (Gump
et al., 2017; Lefferts et al., 2017). The EECHO research project's focus is

on environmental toxicant exposures and cardiovascular risk indices in
children The study recruited 295 participants during 2013–2017 and
had a ZIP-code selection criteria to target low- to middle-income
neighborhoods in Syracuse, NY and surrounding areas. Similar numbers
of male (54%) and female (46%), and African American (58%) and
White (42%) children participated in the study. At the time of the
present analysis, BLL data were available for 270 children. Data were
excluded for one participant who had very high BLL, 14.72 µg/dL, a
value +12 SD from the mean. Re-testing of the blood-sample con-
firmed this value was not a measurement error and likely represents an
outlier with acute high-level exposure.

Data were also excluded for 35 participants who resided outside
Syracuse city limits. From those who resided within the city limits, an
additional 13 were excluded because age of housing was not available
from records. These 13 cases did not differ from the sample in terms of
socioeconomic status (SES) (t (13.2) = -0.96, p=0.35), BLL (t (15.7)
= 0.28, p=0.78), body mass index (BMI) (t (13.3) = -0.85, p= 0.41),
age (t (13.6) = 0.26, p=0.79), or race (X2 (1) = 0.01, p= 0.92). The
data for this paper were from the remaining 221 children recruited into
the study. Since the scope of this study was limited to the city bound-
aries of Syracuse, we did not make comparisons between the sample
and the 35 cases residing outside the city. Geographic distribution of
our sample is shown in Supplemental Fig. 1.

EECHO study participants arrived at the research laboratory in
Syracuse University on Saturday mornings. During this visit, children
signed an assent form while parents signed a separate guardian consent
form, both approved by the Institutional Review Board at Syracuse
University. Participants were paired with a trained research assistant to
measure their height and weight, and provide electronic surveys ad-
ministered on iPads through Qualtrics Survey Software (Qualtrics,
Provo, UT). Children were also part of an extensive blood draw protocol
to measure metals and metabolic panels. A certified phlebotomist drew
5-mL venous blood into a plastic lavender-top (EDTA) tube, certified by
the analyzing laboratory for measurement of blood-Pb concentrations.
Blood specimens were immediately placed on ice. Within 2 h of the
blood draw, samples were transferred into 5-mL cryovials (certified by
the analyzing laboratory) and frozen at − 80 °C pending shipment to
the trace elements section of the Laboratory for Inorganic and Nuclear
Chemistry at the New York State Department of Health's Wadsworth
Center, Albany, NY.

2.1. Measures

2.1.1. Blood lead levels
Whole blood was analyzed for Pb using a well-established biomo-

nitoring method optimized for a Thermo XSeries2 Inductively Coupled
Plasma-Mass Spectrometer (ICP-MS), which was used throughout the
EECHO study (Thermo Fisher Scientific, MA). A complete description of
the biomonitoring method has been described elsewhere (Palmer et al.,
2006). The ICP-MS instrument was calibrated using a matrix-matched
(blood) protocol, with calibration standards traceable to the National
Institute of Standards and Technology (NIST, Gaithersburg, MD).
Method detection limits were calculated during the study using the
IUPAC recommendations for lead in a blood matrix: 0.07 μg/dL. In-
ternal quality control (IQC) materials (four levels) covering the range of
exposures expected in the US population were analyzed at the begin-
ning, end and throughout each analytical run. All IQC samples were
prepared in-house from whole blood obtained from lead-dosed animals,
and supplemented with inorganic salts of mercury (Hg), and methyl-
mercury chloride. Typical repeatability, or between-run imprecision,
was 2.6% for lead. Method accuracy was assessed throughout the study
by analyzing NIST Standard Reference Material (SRM) 955c – Toxic
Metals in Caprine Blood. Method performance was monitored through
successful participation in six external quality assessment schemes for
trace elements that included these Pb in whole blood. The analysis was
repeated for any elevated value: lead> 5 μg/dL.
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2.1.2. Georeferenced data
Parcel data were obtained from the City of Syracuse's open data

website (http://data.syrgov.net). A polygon shapefile of all city parcels
was downloaded and all parcels with a designated vacant building1 were
extracted. Afterwards, the coordinates for each polygon centroid of a
vacant building's parcel were calculated and projected to NAD83/UTM
Zone 18 N for use as point data. The point data file consisted of 1828
vacant parcels in the City of Syracuse. Thirty-three vacant parcels were
excluded from analysis for having a built year of 1979 or later. Lead-
based paints were banned in 1978, thus, any structure built afterwards,
has a low probability of containing lead hazards. The resulting shapefile
consisted of 1795 points for analysis, of which 33 points (1.8%) had no
information regarding year built but were kept for analysis due to the
vast majority of structures being older than 1978. Parcel data used was
the most up to date as of August 2017.

2.1.3. Spatial density
The spatial density of vacant properties was calculated using the

Kernel Density tool in the Spatial Analyst toolbox of ArcGIS 10.4 (Esri,
Redlands, CA). This tool calculates the density of point features at a set
distance, or bandwidth, using a quartic kernel function based on
Silverman's formula for density estimation (Silverman, 1986). The tool
creates a kernel surface map, assigning a value of 1 at each points’ lo-
cation and then smoothly decreasing to zero at the set bandwidth. An
output raster surface is created in which the values from all the kernel
surfaces, layered on top of each other, are added to calculate the density
at each raster cell. To assign vacant density values to each research
participant with measured BLL, street home addresses were geocoded
using the NYS GIS Program Office's Street and Address Composite lo-
cator (http://gis.ny.gov), with a NAD83/UTM Zone 18 N projection.
Geocoded addresses were then plotted on top of each density raster, and
the corresponding value was extracted. Geocoding quality of address
points is shown in Supplemental Table 1.

2.1.4. Bandwidth selection
The bandwidth is an important estimate in any kernel density

analysis. In the spatial case, however, there is no clear methodology for
how to choose a bandwidth. The bandwidth defines the radius at which
a window is created, centered at each point, and calculates the density
within. Smaller bandwidths lead to spikier surfaces, with less dispersion
from point sources. Larger bandwidths lead to smoother surfaces, with
more dispersion from point sources. It is acceptable to use several
‘reasonable’ values and then choose one that is plausible based on the
process being studied (Bivand et al., 2008; Gatrell and Bailey, 1996). In
this case, kernel density was calculated at different bandwidths, from
90 to 240m in 30m increments, with each creating a different raster
surface of vacant property densities. Given that there is no prior re-
ference for this, we began with 90m because a radius of that size
provides a large enough window to include 2–3 properties around the
point of interest. Each bandwidth was tested individually as a predictor
in regression models, and model quality was examined using Aikake's
information criteria (AIC) (Burnham and Anderson, 2004). We aimed to
find a bandwidth at which the density variable became non-significant
and/or quality did not improve. All bandwidths, however, were sig-
nificant predictors of BLL, and with each increase in bandwidth, there
was a decrease in AIC, which indicates an improvement in model
quality. AIC minimization is a widely used method in analysis utilizing

a spatial variable that requires a bandwidth selection (Oshan and
Fotheringham, 2017; Shao et al., 2017b; Webber and Stone, 2017; Xie
et al., 2015). Ultimately, a bandwidth of 240m was chosen to present as
results because it had the most explanatory power (Supplemental
Table 2).

2.1.5. Period built
Geocoded home addresses from research participants were plotted

on top of the shapefile containing all the city parcels and information
was merged from each parcel spatially intersected by an address point.
Year built information for the children's individual residence was ca-
tegorized into four groups (pre-1940, 1940–1959, 1960–1977, and
1978–2017). These categorizations have a clear association with blood-
Pb (Fig. 1) and are based on previous research showing that, prior to
1978, each period backwards in time has a higher prevalence of homes
containing lead-based paint (www.epa.gov/lead/protect-your-family-
exposures-lead; Jacobs et al., 2002).

2.1.6. Covariates
To avoid over-fitting our model with too many confounders

(Babyak, 2004), we selected a limited number of known confounding
variables consisting of race, age, BMI, and SES, based on previous re-
search. Racial differences have been documented in lead exposure
(Lanphear et al., 1996; Winter and Sampson, 2017), as well as SES,
health outcomes, and neighborhood environments (Diez-Roux et al.,
2010; Rognerud and Zahl, 2006; Yang et al., 2017). Age has been
identified as a significant risk factor for exposure (Jones et al., 2009;
Keller et al., 2017), with younger children being at higher risk. BMI has
also been found to have a significant, inversed association with BLL
(Cassidy-Bushrow et al., 2016; Scinicariello et al., 2013). BMI was
calculated from height and weight measurements and then converted to
a percentile rank on the CDC BMI-for-age growth chart. To measure
SES, annual household income, on a 1–10 scale, was divided by the
square root of the number of household members (Rognerud and Zahl,
2006). This adjusted income, education level and occupation data were
collected, using categorizations outlined in Hollingshead
(Hollingshead, 1975), for both parents when available and given
equivalent weights by using z-scores. Subsequently, an SES score was
calculated by averaging across these 3 measures. For some parents who
refused to provide information on all three variables, most notably
occupation, SES was calculated from the average of the other two do-
mains. There is a great deal of variability in the operationalization of
SES in the literature. This approach of combining multiple indicators of
SES (education, income, occupation, and family size) to properly cap-
ture the broad nature of this construct has been utilized before (Gump
et al., 2017; Lefferts et al., 2017).

We also examined the potential confounding of several other vari-
ables that were not included in the final model. We examined the effect
of residential lead plumbing. Data was only available for 173 partici-
pants, and modelled with the other covariates. Lead plumbing was not
associated with BLL and therefore excluded from further analysis. The
City of Syracuse treats water with orthophosphate, which coats pipes
and prevents lead from seeping into the water. We also considered the
influence of distance to highway, from place of residence, but there was
no association with BLL. Historically, lead exposure from vehicle
emissions was a function of leaded gasoline. EPA regulations of gaso-
line's lead-content have dramatically reduced lead levels air pollution
(www.epa.gov/air-trends/lead-trends; Koller et al., 2004). Ad-
ditionally, we examined nutrition as a possible confounder. Nutrition
quality was measured using the Healthy Eating Index (HEI) (Guenther
et al., 2014). HEI scores (n=199), however, were not associated with
BLL in a covariate model or in bivariate analysis. Because some BLL
samples were collected as far back as 2013, we assessed sensitivity by
modelling samples collected during 2017 only (n=26) – our final
model held true even with the truncated sample size. We also con-
sidered the condition of vacant structures in a regression model by

1 City of Syracuse Code of Ordinance Sec. 27–10 defines a vacant building as:
A building or portion of a building which meets one or more of the following criteria –
Unoccupied and unsecured; Unoccupied and secured by other than normal means;
Unoccupied and unsafe, or unfit, as determined by the division; Unoccupied and in
violation of federal, state, or local laws, ordinances and/or regulations; and/or
unoccupied and one (1) or more violations of this chapter or the New York State
Union Fire Prevention and Building Code exists on the building, parcel, or property.
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modelling a weighted kernel density. Weighted kernel density was es-
timated by using city assigned conditions (1=Best to 5=Worst) for
1560 vacant structures, but did not improve our model and was ex-
cluded from further analysis.

2.2. Analysis

Because BLLs were not normally distributed, this variable was log
transformed. This transformation resulted in a normal distribution of
the values: likewise, kernel density values were normalized to z-scores.
These transformations allow us to better understand how changes in z-
score affect log-changes in BLL values. Three participants who did not
have an SES score due to parental missing data, were assigned the mean
SES score of this sample. To account for confounding, we used suc-
cessive linear regression models. First, we modelled the covariates in
Model 1 as predictors of BLL. Second, age of housing was introduced in
Model 2, and finally the spatial density variable was introduced in
Model 3. Age of housing was included in the regression models as a
Period Built ordinal scale; this variable, along with SES and limiting our
study area to the city limits, allows us to control for variation in indoor
dust-lead exposure (Lanphear et al., 1998a; Sargent et al., 1997). Re-
gression models were conducted using R version 3.4.1 (R Core Team
2016, Vienna, Austria) in RStudio 1.0.153 (RStudio Team 2016, Boston,
MA.).

Spatial autocorrelation of the residuals was tested using ArcGIS’
Global Moran'sI tool. Moran'sIcan be viewed as a spatially weighted
form of Pearson's correlation, in which a value of zero represents a
random spatial pattern of the attribute, whereas positive values indicate
neighbors tend to be similar when close together and negative values
indicates the opposite (Waller and Gotway, 2004). The attribute tested
was the Studentized residuals of the regression models, which are a
scaled version of the true errors and have a constant variance of one. An
incremental spatial autocorrelation analysis of the covariate-only re-
siduals showed 1188m to be the peak distance for autocorrelation. We
further tested Moran'sIon the residuals for all the models, with a zone-
of-indifference relationship and a threshold of 1188m (Euclidean Dis-
tance). Zone of indifference (ZOI) allows us to use a set distance for
analysis but does not impose sharp boundaries on the attributes. All
neighbors within 1188m (fixed-distance method), of any one point,
have the same weight of influence, but the influence of neighbors right
past the set threshold is still considered, and starts decreasing with

Fig. 1. Relationship between age of housing and BLL among children (N=221) in Syracuse, NY. Outcome shown in log-transformed and original units or mea-
surement.

Table 1
Sample characteristics.

Characteristic N Mean or % SD Min. Max.

Male 115 52%
African American 141 64%
Age (in years) 221 10.49 0.94 8.99 12.00
BMI scorea 221 69.06 29.91 0.00 99.85
BLL (ug/dL) 221 1.066 0.68 0.28 4.94
Family SES scoreb 218 − 0.060 0.800 − 1.58 2.07
Parental incomec 219 1.00 10.00
No income/homemaker 14 6.4%
Under $5 K 27 12.3%
$5 K - $20 K 60 27.3%
$20 K - $45 K 66 30.2%
$45 K - $65 K 10 4.6%
$65 K or greater 42 19.2%
Occupationd 192 1.00 9.00
Not applicable/unknown 81 38%
Unskilled or semi-skilled (levels

1–3)
47 21.8%

Skilled (levels 4–6) 58 26.9%
Managerial (levels 7–9) 28 13.3%
Parental educatione 219 1.00 8.00
Less than HS 40 18.2%
High School 64 29.2%
Some college/college graduate 84 38.4%
Some grad/graduate degree 31 14.2%
Housing period
Pre-1940 172 77.8%
1940–1959 20 9.1%
1960–1977 17 7.7%
1978–2017 12 5.4%

Note.
a Raw BMI converted to CDC growth chart percentile scores.
b Three measures of social status were converted to z-scores and combined to

yield a score.
c Income based on a 1–10 scale, some categories combined for presentation

only, scale was subsequently adjusted by number of people in household.
d Occupation based on Hollingshead's scale of occupational prestige, some

categories combined for presentation only, 1–3 (unskilled and semi-skilled),
4–6 (small business owner, clerical, semi-professional), 7–9 (manager, business
owner, higher executive).

e Education based on 1–8 scale, some categories combined for presentation
only, a score of five on education scale corresponds to “some college”.
Education was averaged across parents.
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distance (inverse-distance method).

3. Results

Our sample consisted of 221 children with a mean age of 10.5 (SD
= 0.94), 64% self-identified as African American, and 52% were male.
The sample was low-middle income, 7% of parents reported having no
income, 40% of families had an annual income of $20,000 or less, and
30% reported making between $20,000 and $45,000. The large ma-
jority of families lived in houses built before 1940, and BLL ranged from
0.29 µg/dL to 4.94 µg/dL, with a mean of 1.07 (SD = 0.67). All sample

characteristics are shown in Table 1.

3.1. Linear regression models

All covariates, except for race, were significant predictors of BLL in
our sample. Before accounting for the effect of the spatial density
variable, age, BMI, and socio-economic status (SES) were all inversely
associated with BLL (p=0.0086, p < 0.0001, and p= 0.0083, re-
spectively). In a successive model, age of housing also had a significant
association with BLL (p=0.0004). More notably, we found a positive,
significant relationship between BLL and the spatial density of vacant

Table 2
Regression coefficients (with 95% confidence intervals), r-squared change, and AIC values are shown for all models (n=221).

Predictor b b 95% CI β β 95% CI sr2 sr2 95% CI r Fit Difference

Model 1 (Intercept) 1.37** (0.57, 2.18)
Age − 0.10** (−0.18, −0.03) − 0.17 (−0.30, −0.04) .03 (−.01, .07) − .22**
Race − 0.05 (−0.21, 0.11) − 0.04 (−0.17, 0.10) .00 (−.01, .01) − .09
BMI − 0.00** (−0.01, −0.00) − 0.25 (−0.38, −0.13) .06 (.00, .12) − .27**
SES − 0.13** (−0.22, −0.03) − 0.18 (−0.31, −0.05) .03 (−.01, .07) − .18**

R2 = .142**
95% CI(.06,.22)
AIC = 357.24

Model 2 (Intercept) 1.86** (1.10, 2.62)
Age − 0.11** (−0.19, −0.04) − 0.19 (−0.31, −0.07) .03 (−.01, .07) − .22**
Race − 0.13 (−0.28, 0.02) − 0.11 (−0.24, 0.02) .01 (−.01, .03) − .09
BMI − 0.00** (−0.01, −0.00) − 0.20 (−0.32, −0.08) .04 (−.01, .08) − .27**
SES − 0.11* (−0.20, −0.02) − 0.15 (−0.27, −0.03) .02 (−.01, .05) − .18**
Period built − 0.24** (−0.32, −0.16) − 0.36 (−0.48, −0.24) .12 (.05, .20) − .36**

R2 = .262** ΔR2 =.12**
95% CI(.15,.34) 95% CI(.05, .20)
AIC=325.77

Model 3 (Intercept) 1.55** (0.79, 2.31)
Age − 0.0* (−0.16, −0.02) − 0.15 (−0.27, −0.04) .02 (−.01, .05) − .22**
Race − 0.10 (−0.25, 0.05) − 0.08 (−0.21, 0.04) .01 (−.01, .02) − .09
BMI − 0.00** (−0.01, −0.00) − 0.20 (−0.31, −0.08) .04 (−.01, .08) − .27**
SES − 0.04 (−0.13, 0.05) − 0.06 (−0.19, 0.08) .00 (−.01, .01) − .18**
Period built − 0.20** (−0.28, −0.12) − 0.30 (−0.42, −0.18) .08 (.02, .14) − .36**
Spatial density 0.14** (0.06, 0.21) 0.24 (0.11, 0.37) .04 (−.00, .09) .38**

R2 = .306** ΔR2 =.04**
95% CI(.19,.38) 95% CI(−.00, .09)
AIC=314.49

Note. * indicates p < .05; ** indicates p < .01. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents
unstandardized regression weights; beta indicates the standardized regression weights; sr2 represents the semi-partial correlation squared; r represents the zero-order
correlation.

Fig. 2. Relationship between BLL and increases in the spatial density of vacant properties around point of residence of children (N=221) in Syracuse, NY. Outcome
shown in log-transformed and original units of measurement.
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properties (p= 0.0003), even after accounting for individual housing
age. Interestingly, the effect of SES remained the same with the in-
troduction of housing age, but became a non-significant predictor after
accounting for spatial density. All regression coefficients are shown in
Table 2. Given the log function of the outcome measure, each unit in-
crease in the spatial density of vacant properties is associated with a
15% increase in the median BLL (see Fig. 2). That is, median levels of
blood-Pb increase by as much as 15% as distance decreases from point
of residence to spatial density peaks of vacant housing.

3.2. Spatial autocorrelation

The spatial density variable of vacant properties removed spatial
autocorrelation from our final model. Spatial autocorrelation (SA) of
the residuals violates the assumption in regression models of in-
dependent observations and indicates that an underlying spatial process
is responsible for some of the unexplained variance in the outcome. SA
results are shown in Table 3.

4. Discussion

Results show that the spatial density patterns of vacant properties
are a salient determinant of background Pb exposure among Syracuse
residents. Our results hold true after accounting for known factors as-
sociated with exposure, and even explain the spatial variation observed
in children's BLL. The methodological approach presented in this paper
addresses some important limitations in the current literature of GIS-
based exposure research; namely, the lack of research on low-level
exposure, the use of aggregated measurements of risk factors, and not
accounting for individual characteristics of children (Akkus and
Ozdenerol, 2014). This novel methodology identifies the spatial density
pattern of vacant properties as having more explanatory power than
demographic variables when predicting low-BLL. In fact, socio-eco-
nomic status (SES) becomes a non-significant predictor after accounting
for vacant property density, suggesting that low-SES does not serve as a
risk factor beyond what type of neighborhood one can afford to live in.
This presents a more concrete explanation for differences in exposure,
than simply living in poverty.

Vacant structures are frequently neglected with deteriorating in-
terior and exterior paint. Given we only measured structures built pre-
1978, paints are presumably Pb-based. It is not implausible that as these
properties deteriorate, Pb-contaminated dust disperses into the sur-
rounding environment. Because increases in spatial density values are a
function of increases in the number of vacant properties within a small
area, they serve as indicators of increasing levels of accumulated Pb in
the surrounding environmental media, namely street dust and soil.
Given the age range of our sample, the most likely pathway of exposure
is simply through being outdoors engaged in activities around these
vacant structures. Additionally, many children walk or bike to school.
Children residing in areas with multiple vacant properties close to-
gether are at the highest risk of exposure given that lead-dust will

disperse, and accumulate, from multiple structures. Furthermore, lead
can be tracked indoors from the surrounding environment. This is re-
levant given the low car ownership in most impoverished neighbor-
hoods.

In Syracuse, there are over 1800 vacant properties. Eighty-five
percent of them were built before 1940. These properties are densely
located in identified areas of elevated BLL (Griffith et al., 1998), ele-
vated soil-Pb concentrations (Shao et al., 2017b), concentrated poverty,
and low rates of homeownership, that are demarcated by the two in-
terstate highways that split the city (Larsen et al., 2017) (see Fig. 3).
The establishment of the New York Land Bank Act of 2011 aimed to
empower communities to address vacant properties and revitalize
neighborhoods. However, The Greater Syracuse Land Bank, which has
sold 500 properties as of December 2017, was defunded $1.5 million by
the City Common Council; similarly, New York State funding is not
committed past 2018. More strikingly, the Syracuse Lead Program, the
city's abatement and primary intervention entity, was dismantled after
renewal of federal funding was not approved. With two major programs
lacking funding, we can expect Pb hazards associated with vacant
properties to persist as the city's housing stock continues to age and
deteriorate. This complex social problem creates chronic, insidious
exposure in particularly vulnerable low-income populations that cannot
afford to relocate to better neighborhoods (Diez-Roux et al., 2010;
Lanphear et al., 2018).

4.1. Limitations

The parcel dataset obtained did not contain information on how
long a property had been left vacant. It is likely that the longer a
property lies vacant, the greater amount of Pb that is disturbed; how-
ever, we were unable to test for this in the presented analysis.
Additionally, we were unable to measure levels of soil-Pb or indoor
dust-Pb of participants’ dwellings that could have provided a direct test
of this pathway. The lack of knowledge on when the properties became
vacant, how long a family had resided at their current address, and
whether primary intervention abatement was performed, makes it dif-
ficult to establish a causal link with BLL. It is possible that exposure
occurred elsewhere or before these properties became vacant.
Nonetheless, we expect the vacancy status of these properties has re-
mained relatively constant over the past few years. A news report in
2010 noted 1600 vacant properties (Dowty, 2010) in Syracuse; a
number that increased to 1854 by 2013 (Knauss, 2013). It is not un-
likely that the majority of vacant properties have remained vacant for
the past several years (Weaver, 2015). Since BLL have been found to be
auto-correlated over time (Shao et al., 2017a), any changes in vacant
property status or intervention utilization is introducing random error,
thereby, the effect found in this study could be underestimated
(Armstrong, 1998).

5. Conclusion

Despite its limitations, the present study is the first to identify this
pathway of background Pb exposure. Given that this model accounted
for spatial autocorrelation suggests that the spatial density pattern of
vacant structures may be the underlying spatial process that previous
studies have found, but not identified (Haley and Talbot, 2004). This
model allows for discerning practical strategies to address Pb-hazards in
any city, and can help prevent misspecification of exposure models in
future research. Because this hazard is an ongoing concern associated
with adverse behavioral, cognitive, and physiological outcomes (Gump
et al., 2017, 2009, 2007; Lanphear et al., 2018, 2005), future studies are
needed to explicitly measure, simultaneously, indoor residential ex-
posure and the contribution of vacant properties to environmental Pb.
The present study adds to this body of knowledge and can help inform
our efforts towards mitigating exposure.

Table 3
Moran's I summary (spatial autocorrelation) of Studentized residuals.

Model N Moran's I Z score p-value Pattern

Model 1 221 0.03 2.19 0.03 Clustered
Model 2 221 0.022 1.68 0.09 Clustered
Model 3 221 0.018 1.45 0.14 Random

Note. Index summaries were calculated with a distance threshold of 1188m and
a zone of
indifference spatial relationship. Zone of indifference allows for a set distance
band without
imposing sharp boundaries on neighbor relationships. Clustered patterns in-
dicate residual values are similar when close to each other but does not specify
whether they are under-predicting or over-predicting the model.
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Fig. 3. Map of Syracuse, NY showing log-transformed BLL of children (N=221) at their point of residence in relation to the spatial density of vacant properties
throughout the city.
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